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NOMENCLATURE 

function defined in equation (2); 
rod diameter ; 
function defined in equation (28); 
gravitational constant; 
dimensionless layer height, 

%(Pl - PJ~I”~; 
H, dimensionless layer height, h(g/v2)1’3 ; 
h, layer height ; 

K dimensionless wavenumber, 

m, 

PI 
R 

R’, 

s, 

4 
11, 
u, 

x, 

Y, 

k[a/g(p, - ~dl”*; w, growth rate. 

dimensionless wavenumber, k(v’/g)l” ; 
wavenumber ; Subscripts 

dimensionless viscosity parameter, c, critical ; 

a3’4/[vg”4(p, - pp] ; 4 most dangerous; 

dimensionless parameter defined in equation t, derivative with respect to time; 

(16); X, derivative with respect to x coordinate; 

pressure; Y, derivative with respect to y coordinate; 

density ratio, p1/p2 ; A upper layer ; 

dimensionless rod radius, 2, lower layer. 

D/2CWp, - P#‘~; 
parameter equal to 1 for immiscible case and SuPerscriPt 

equal to 0 for miscible case; T, transpose of a matrix. 

time ; 
velocity in x-direction; 
velocity in y-direction ; 
rectangular coordinate ; INTRODUCTION 
rectangular coordinate. TAYLOR instability has been the subject of several 

. . studies in the past. These studies have generally sought 
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Abstract -The combined effect of interfacial tension, liquid viscosity and liquid layer thickness on Taylor 
instability ofplane horizontal interfaces has been studied. The linear analysis has been made keeping in mind 
the potential application of the results to physical processes such as boiling, melting of a horizontal substrate 
placed beneath pools of immiscible or miscible liquids and condensation or evaporation from horizontal 
plates or tubes. In all cases the predicted most dangerous wavelengths are compared with the available 
experimental data, and with limiting analytical results wherever possible. A few experiments have been 

conducted to substantiate the effect of liquid viscosity during dripping from horizontal tubes. 

v, kinematic viscosity; 

P, density ; 

6, interfacial tension; 

4, stream function, defined in equations (7) and 

(8); 
$, potential function, defined in equations (7) and 

63); 
Q dimensionless growth rate, 

a, 
~~“4(Pl + PPI[dPI - P2)13’4; 
dimensionless growth rate, o(v/g)“j; 

Greek symbols 
interface irregularity; 

simplifications to the complex interaction of such 

z, dimensionless wavelength, 1/43K; 
variables as finite fluid layer depth, fluid viscosity and 

A-, dimensionless wavelength, 
interfacial tension. To properly analyze such pheno- 

2n/R = %(g/v2)“3 ; 
mena as melting, condensation, evaporation, boiling 

1 wavelength, 2n/k; 
and sublimation, it is, however, important that com- 

‘, 
IJL, viscosity ; 

bined effect of these variables on the most dangerous 
wavelength and its growth rate be quantified. The 
purpose of this paper is to analyze the effect of 

l This work was supported by the Reactor Safety Research viscosity, finite layer and surface tension on Taylor 
Division of the Nuclear Regulatory Commission under instability and to compare with data wherever 
agreement No. AT(O4-3)-34PA223, Mod. 5. possible. 
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Instability of a horizontal interface between two 
inviscid and miscible fluids of infinite depth was 
discussed by Taylor [l] in 1950. He showed that 
i~egularities at the interface tended to grow if acceler- 
ation was directed from heavier to less dense fluid. 
Later, Bellman and Pennington [2] extended the 
inviscid analysis to take into account the effect of 
surface tension and viscosity of the two fluids. For the 
simple case in which interfacial tension was included 
but &ids were assumed to be inviscid and infinite, they 
obtained the following dispersion relationship be- 
tween dimensionless growth rate and dimensionless 
wave number as* 

Q2 = R - K3 (1) 

Any disturban~ with I( > 1 will be stable while a 
disturbance with K < 1 will be unstable. For a neutral 
disturbance K will have value equal to 1 whereas for a 
disturbance having the fastest growth (dQ/dK = 0), K 

will correspond to l/,/‘?. 
From this formulation of the general case in which 

viscosity and surface tension were included, Bellman 
and Pennington [2] concluded that effect of viscosity 
was to elongate the fastest growing wavelength. Vis- 
cosity did not, however, effect the wavelength of a 
neutral wave. Subsequently Dhir and Lienhard [3] 
used Bellman and Pennington’s analysis to obtain a 
dispersion relation as 

B(M,,M,) = (-K+K3”tR2) 

REGION I 

Y 

x 

REGION 2 

FIG. 1. Model for stability analysis. 

Plesset and Whipple [6] made the first attempt to 
study the combined effect of fluid viscosity and layer 
height on Taylor instability. Since the motivation of 
their work was to explain certain bio-convective 
phenomena, they were interested in stability of super- 
posed layers of miscible liquids of near equal viscosities 
and densities. Their analysis showed, however, that 
viscosity tended to elongate the fastest growing wave- 
length while finite layer height tended to shorten the 
wavelength. 

In this paper first dispersion relations for the most 
general case in which both superposed layers are 
assumed to be finite, viscous and immiscible is ob- 
tained. The dispersion relation which is a determinant 
of an 8 x 8 matrix is then simplified to treat physical 
phenomena of practical interest such as boiling, sub- 
limation, condensation and melting. The predictions 
are then compared with experimental data wherever 
possible. Finally, it is shown how instability of miscible 

1 4RK’R 
X 

1 mi + 1 

+ R&f2 RM2 

+ (R2 - I)‘j2 
= 0, (2) fluids could easily be analyzed using the dispersion 

I -_- __ ~ 
MS 

relation obtained earlier for immiscible fluids. 

Assuming that fluid layers were infinite and that vapor 
viscosity could be neglected, Dhir and Lienhard [3] 
showed that their data of dominant wavelength 
observed during film boiling of cyclohexanol com- 
pared quite favorably with the data. 

The effect of heat and mass transfer on instability of 
two finite iayers of inviscid liquids was analyzed by 
Hsieh [4]. His work showed that for many appli- 
cations of interest, the effect of heat and mass transfer 
on the fastest growing Taylor wavelength and its 
growth rate, will be small. For the limiting case of no 
heat and mass transfer at the interface, his expression 
for the dispersion relation approached the earlier 
result of Lamb [5] 

a* = (R + l)(K - K’) 

R coth KH, + coth KH, ’ 
(3) 

From equation (3), it is seen that finite layer height 
has no effect on the critical wave number (5-J = 0) but 
tends to decrease growth rate while increasing the 
wave number of the fastest growing Taylor wave. In 
the limit as H, goes to zero, the dimensionless wave 

number of the fastest growing wave approaches I/$. 

* Symbols are defined in the Nomenclature. 

ANALYSIS 

Two-dimensional instability analysis of two super- 
posed layers is made by using the physical model 
shown in Fig. 1. For most of the applications, this 
assumption is justified because the cell size given by a 
two-dimensional wave will be the same as that given by 
a three-dimensional wave. This has been shown by 
Sernas et al. [7] for film boiling on a flat plate. The 
fluids are bounded by rigid wall and are assumed to be 
incompressible and Newtonian. Non-linearity effects 
are neglected. This assumption is not very stringent in 
the absence ofheat and mass transfer at theinterface. It 
is expected that once a wave pattern is established, the 
non-linearity in growth rate will not alter the dom- 
inant wavelength. The linearized governing equa- 

tions for both fluids are: 

u, + vy = 0 14) 

% + $P. = Vf%* + UyJ (5) 

1 
0, + -p + 9 = vkx, + Q. 

These equations are satisfied by 

u= -rbx-)t/y 

(6) 

(7) 
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v= -&+L (8) I41 =o at y = h, no slip condition (24) 

P = PO - P9Y + P4, (9) 
01 =o at y = h, i at upper boundary. (25) 

provided that Substitution of kinematic condition (17) and poten- 

4X, + 4p = 0 
tial and stream functions given by equations (12)-( 15) 

(10) into the above interfacial and bounding wall con- 

;($XX + II/,,) = ti, 
ditions yields eight equations in eight unknowns. 

(11) These equations can be written in the form 

In the above equations 4 and tj are potential and [C][A,,B,,C1,D,,A*,Bz,Cz,D,]* =O. (26) 

stream functions while p. is pressure at the un- For a non-trivial solution the determinant of the 
disturbed interface. Equations (10) and (11) can be coefficient matrix, C, should be equal to zero. After 
satisfied if 4 and II/ for the upper and lower fluid are non-dimensionalizing various parameters and re- 
chosen as arranging various elements of the matrix, C, the dis- 

4I = [A, ek(yehl) + B, e-k(y-hl)]ewtcos kx 
persion relation between growth rate, Q, and wavenum- 

(12) ber, K, is obtained as shown in equation (27) 

det[C] = 

1 

-1 

2 

-F-*2!!!! 
WI-1 

2 

0 

0 

$“I 

$“I 

1 -ml ml 

1 1 1 

2 73% F-Q’>!& F+R'- 2m, F-Cl- 
1 m:-1 ??I-1 

-2 -(m:+l) -(mf+l) 

-1 -1 

I -I 

R2 m:+1 R2 WI:+1 

R VI-1 R m:-1 

-2 M, 2 M, 

R M, RM, 

e-KH2 eK"2 

_emKHi $"i 

0 0 

0 0 

m2 -mz 

-I -1 

-0’ 25 R= Zm, 

R m;-1 R m;-1 

m:+l M, m:+1 M, 

R M, R M, 

_m,e~"'KH' m2e=4HI 

e-m*KHz pmf* 

0 0 

0 0 

J/l = [Cl emlMy-hl) + D, e- mlk(y-hl)]ewr sin kx (13) 

42 = [A, &y+h2) + B, e_k(Y+h2)]e~f ~0s kx (14) 

ljl_, = [C, em2Wy+hz) + D, e-m2k(y+hz)]ewf sin kx (15) 

and parameters m, and m2 involving growth rate and 
wave numbers are defined as 

112 

i = 1,2. (16) 

The linearized kinematic condition at the interface can The dispersion relation, equation (27), has the 
be written as: following properties : 

qt=v at y=q (17) 

while the boundary conditions at the perturbed in- 
terface and at the boundary walls are: 

(i) it reduces to equation (1) if M, = M, = H, = 
H, = TX. 

(ii) it reduces to equation (2) if H, = H, = x. 
(iii) it reduces to equation (3) if M, = M, = 00. 

u1 = u2 at y = q 

01 = v2 at y = rj I 

no slip condition (18) 
at interface (19) 

-P1 + 2kVl,, = -P2 + %2v2,, - wxx 

Pl(V1.x + 4.y) = P2tu2.x + u2.y) 

at y = tj 

I 

equal stress components (20) 
at y = tj at interface (21) 

u2 =o at y = -II, no slip condition (22) 
l.2 = 0 at y = - h2 at lower boundary (23) 

Equation (27) represents the most general situation 
and could be solved numerically to determine the role 
of such variables as Ml, M,, H,, H,, and R in the 
fastest growing wavelength and on the corresponding 
growth rate. Fortunately, only rarely has one to do so 
since most of the phenomena of interest lend them- 
selves to some sort of simplifications to equation (27). 
For example, during film boiling on a flat plate or a 
cylinder, the vapor could be assumed inviscid while the 
overlying liquid layer height could be assumed as 

= 0 (27) 

where 

mi = 1 + $[(R - l)/(R + 1)]1’2 i= 1,2 

and 

(164 

F(K) = y(K - sK3). 

In equation (28) s is set equal to 1 in presence of 
interfacial tension and is set equal to 0 when the two 
fluids are miscible. 
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infinite. Similarly, during condensation or evaporation analytical solution for the limiting case as H, - 0 are 
from a tube or flat plate, the vapor layer could be obtained as 
considered inviscid and infinite. Next, we discuss 
several simplified cases of equation (27) while keeping 

K, = l/J2 (irrespective of 

in mind their potential application to physical pheno- value of M,) as Hz ---$ 0. (31) 

mena of interest. Q,-+ [(R + l)H,/2]“’ 

1. Infinite layer viscous, finite layer inviscid These results have been verified with numerical 
Using the simplification that H, + x and M, -+ m, solution and will be discussed in the section on results 

the dispersion relation (27) reduces to and discussion. 

2. Finite layer viscous, ir$nite layer inuiscid 

Assuming that H, and M, -+ ~j, the dispersion relation (27) reduces to 

(32) 

1 1 -1 -1 -1 
R2 m:+1 RZ m:+1 RZ 2m, R2 2m, F-Q2 -~ _~ __~ _~ 
R m:-1 R m:-1 R m:-1 R mf-1 

= 0. 
0 -2 2 m:+l m:+l 

0 c- Kf12 eKH> _m2 e-mSH* m2 em2KH2 

0 _e-KH2 pi ,ymSH2 em2KH2 

The determinant equation (32) could be expanded. After several complicated algebraic manipulations 
equation (32) reduces to : 

- 8m(m: + 1) + [(m: + 1)’ - 4m,](m, - l)cosh(m, + l)KH, + [(mi + 1)’ + 4m,](m, + l)cosh(m, - l)KH, 
+ = 0 (33) 

(m: - l)[(m, + l)sinh(m, - l)KH, -(ml - l)sinh(m, + l)KH,] 

I 1 1 1 -1 I 

I mf+l 
F-RZp 

2m, 
mf-1 

F-Q2p 
R2 R2 

mf-1 R -I R = 0. 

-2 -(mf+l) 0 0 0 0 _c-2KH* 1 I 

(29) 

The determinant in equation (29) could be expanded 
into 

M, m,+l 
B(M,, cc) + (coth KHz - l)R2 - -=O 

R+l ml 

or 

-K+K3+R2 

(304 

4R 1 m, 
1+-p--- + 

coth KH, - 1 

R+l m:-1 ml+1 
= 0. 

R+l 

The first term in equation (30a) is Bellman and 
Pennington’s equation (2) with M2 = co. The second 
term represents the correction due to lower layer being 
finite. In thelimit as H, goes to infinity the second term 
vanishes. To find the most dangerous growth rate and 
corresponding wavenumber, equation (30b) could be 
differentiated with respect to K while setting dR/dK = 
0 in it. This new equation along with equation gob) 
could be solved simultaneously for Q, and K,,. A closed 
form analytical solution could not be obtained for R, 
and K,,, hence the two equations in two unknowns R 
and K have to be solved numerically. However, 

The first term of equation (33) is again Bellman and 
Pennington’s equation (2) with M, = x. The second 
term in equation (33) represents the correction to the 
dispersion relation due to one of the layers being finite. 
Equation (33) has to be solved numerically for the 
most dangerous wavelength and the corresponding 
growth rate, as analytical solutions are not possible. 
However, in the limit as H, --+ 0, the analytical 
solutions for the wavenumber and growth rate of the 
most susceptible wave are obtained as 

& - l/,/2 

(34) 

Qi - 
M2(R2 - 1)“‘H; 

12 

provided that 

M,(R - 1)H; << 1. 

It may be pointed out that dispersion relation (33) 
was obtained when the lower lighter layer was viscous 
and finite. This equation will still be valid if the finite 
viscous layer was heavier and the orientation of the 
two fluids was reversed. However, R in equation (33) 
would have to be replaced by l/R. 
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3. Finite layer, viscous, infinite layer viscous 1 

Assuming that upper layer is infinite such that HI 4 CO, the dispersion relation (27) reduces to 

1 

1 ml -1 -1 m2 ml 

1 1 1 -1 -1 -1 

2ml fP m$+l Kt2 mi+l R2 2m, fi* 2m, 
F-_RZ- _- _~ __~ _~ 

m:-1 R m:-1 R m:-1 R rni-1 R m:-1 = 0. 

-(mf+l) 
2M 

-2 R$ 
m:+l M, m:+l MI ~_ -_ 

2 R M2 R M2 

0 0 e-KH2 eKHz _me-m2KH2 m2 em2KH2 

0 0 _e-KH* eKHl e-mnlKHz en*KH2 

The most dangerous wavelength and its growth rate 
could only be obtained by solving the dispersion 
relation numerically. In the present work this was done 
for the case when kinematic viscosities of the two fluids 
are assumed to be the same. 

4. Misciblejuids withjnite jayer viscous, injnite layer 
viscous 

In many applications the superposed layers as 
envisioned in case 3 may be such that the two fluids are 
miscible. For this case the dispersion relation (35) 
could still be used by simply letting s = 0 in function F. 
Now the surface tension, 0, has no physical meaning 
and it may be taken as a constant which simply cancels 
out*. The resulting dimensionless growth rate, wave- 
number and layer height based on kinematic viscosity of 
one of the layers are, 

B = o(vJg2)“3 (36) 

K = k(v2/g)1’3 i = 1 or 2 (37) 

and 

l? = h(g/vf)1’3. 

While the parameters m, and m2 reduce to 

(38) 

(35) 

numerically for wavenumber and growth frequency of 
the disturbance most susceptible to growth by using 
subroutine ZSYSTM. This subroutine solves simul- 
taneously n-non-linear equations in n unknowns. The 
calculations are repeated for various fluid viscosity 
parameters, M, and Mz, density ratios, R, and fluid 
layer heights, HI and H,. The variations in the 
numerical values of the parameters are strongly guided 
by the potential application of the results to various 
physical processes. The results are plotted in terms of 
the dimensionless most dangerous wavelength (Ad = 

l/J5 KJ, rather than wavenumber because wave- 
lengths are measured directly in the experiments. 
Dominant disturbances generally become nonlinear 
after a short initial period of linear growth. The present 
linear analysis is not apt to describe long time growth 
rate or the average growth rate. Hence growth rates 
have generally not been plotted as for any application 
average growth rate must be determined from experi- 
ments. The nonlinearity or growth rate is, however, not 
expected to alter the dominant wavelength. 

Boiling 
During film boiling on a flat plate or during pseudo 

film boiling on a slab of dry ice [S], vapor or gas layer 

The dispersion relation (35) with this non-dimensionalizing scheme becomes 

1 ml -1 -1 m2 m2 

1 1 1 -1 -1 -1 

0 0 ,-KIT, ,RA, 
-m2 e-m2RA2 m2 em2Rff7, 

0 0 _,-RR, pi, e-m2KH2 em,RR, 
1 

= 0. (40) 

RESULTS AND DISCUSSION separates the solid surface from an overlying liquid 

The dispersion relations developed in the previous pool. The thickness of the vapor or gas layer is 

section along with their derivatives with respect to generally small whereas the depth of the pool or 

wavenumber (with da/dK set equal to 0) were solved overlying liquid is relatively quite large. The viscosity 
of vapor is negligible in comparison to that of the 
liquid. Thus, film boiling can be represented by case 1 

* Details are shown in Appendix A. in which a lower layer is assumed to be inviscid and 
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fmite while the upper layer is assumed to be viscous 
and infinite. The dimensionless most dangerous wave- 
length obtained by solving dispersion relation equation 
(30b) is plotted in Fig. 2 as a function of vapor or gas 
blanket thickness. The calculations are made to repre- 
sent film boiling at low pressure (R > 200) and at 
pressures near critical (R N 1.1). It is clear from Fig. 2 
that irrespective of the value of the liquid-vapor 
density ratio and the liquid viscosity parameter, M,, 

the most dangerous wavelength goes to $$ as vapor 
blanket thickness goes to zero. This value is the same 
as predicted earlier in the analysis section. For large 
density ratios the effect of vapor blanket thickness on 
wavelength is much less pronounced. The dimension- 
less vapor blanket thickness of about 0.05 (~0.1 mm 
for water vapor at 1 atm pressure) acts as infinite for R 
2 200 and for values of M, up to 0.1. Vapor blanket 
thicknesses observed during film boiling are generally 
larger than this value and it proves that the assump- 
tion of infinite vapor blanket thickness made earlier 
by Dhir and Lienhard [3] during film boiling of 
viscous liquids was correct. For density ratios of the 
order of about 1, vapor blanket thickness acting as 
infinite depends strongly on the viscosity of the 
overlying liquid. Interacting effect of liquid viscosity 
and density ratio on wavelength is obtained by noting 
that for M, < 100, the asymptotic value of the most 
dangerous wavelength depends on the liquid-vapor 
density ratio. It may be pointed out that liquids with 
M, > 100 behave as inviscid and wavelengths plotted 
in Fig. 2 for M, 2 100 are the same as would be 
obtained from Hsieh’s [4] inviscid analysis without 
heat and mass transfer at the interface. 

In Fig. 2, two data points obtained during sub- 
limation of a horizontal slab of dry ice [8] placed 
beneath a pool of water or glycerol are also plotted. 
The ratio of liquid to gas densities in these cases were 
580 and 730 whereas liquid viscosity parameter n/I,, 

d 

5 _--- ___---_---- 

= 5 _ 

E / 
,/-- 

FIG. 2. Effect of finite vapor layer height on the most 
dangerous Taylor wavelength observed during film boiling. 

for water was 440 for glycerol it was 10. The gas 
blanket thickness in each case was calculated from 
known values of the average heat transfer coefficient 
and by assuming that the gas film had no inertia. It is 
noted that observed values of wavelength compare 
favorably with the data. Unfortunately, the values of 
viscosity parameter, M,, and dimensionless gas film 
thickness Hi are such that no appreciable. effect of 
liquid viscosity and finite layer height can be found. 
For these data inviscid-infinite fluid layer analysis 
would have yielded equally good predictions. 

beaning of hor~zontul substrate placed beneath a pool of 
heavier immiscible liquid 

During different stages of progression of a hypotheti- 
cal core disruptive accident in nuclear reactors, molten 
fuel or fuel steel mixture may come in contact with 
horizontal structural material (steel) or with sacrificial 
material in a core catcher or with concrete floor of the 
containment. Heat transfer from the overlying liquid 
pool will cause melting of the supporting substrate. If a 
solid crust does not separate the pool from the melting 
substrate, the melt which is generally lighter than the 
pool will be removed by Taylor instability. The melt 
removal configuration in turn will govern the penet- 
ration rate of the pool into the solid. The hydrody- 
namic and thermal processes associated with melting 
of lighter materials placed beneath a pool of heavier 
immiscible liquid were investigated in [9]. In this study 
a pool of water was formed over a slab of frozen olive 

oil ~~~~~~~~~~~~~~~~~ * 1.1). Figure 3 taken from [9] 
clearIy shows a Taylor wave pattern during melting of 
a slab of olive oil. 

In a melting process such as described above and 
shown in Fig. 3, a thin melt layer separates the solid 
from the overlying liquid. The melt is generally viscous 
whereas the overlying liquid in most cases can be 
assumed to be inviscid. Also, the liquid pool is much 
deeper than the melt layer. Such a situation is repre- 
sented by case 2 in which a finite layer of viscous and 
lighter liquid lies beneath an infinite layer of heavier 
inviscid liquid. Figure 4 shows the most dangerous 
wavelength as a function of melt layer thickness for 
different melt viscosity parameters, M,, and for pool to 
melt density ratio, R, of 1.1 (water over olive oil) and 4. 
It is noted that the effect of reduced melt layer 
thickness is to shorten the most dangerous wavelength. 
Again, as predicted from the analysis, the most dan- 
gerous wavelength irrespective of magnitude of the 
melt layer viscosity and pool to melt density ratio goes 

to 4% as the melt layer, HZ, approaches zero. For 
thicker melt layers (H, + YZ ), the effect of liquid 
viscosity is to damp the growth rate of the disturbance 
which in turn results in longer most dangerous wave- 
lengths. The effect of melt viscosity on the most 
dangerous wavelength diminishes, however, as the 
pool to melt density ratio becomes large. The results of 
numerical calculations for R --+ Y- (although not 
plotted in Fig. 4) show that the most dangerous 
wavelength will approach the inviscid case irrespective 
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FIG. 3. Photograph of melting of a horizontal slab of frozen olive oil placed beneath a pool of warm water. 

of the viscosity of the melt as long as the melt layer is 
not too thin. These calculations confirm that the 
earlier assumption that vapor is inviscid during film 
boiling will have only second order effect on the most 
dangerous wavelength and suggest that RM, may be 

0.6 

0 ‘i’l’i1iIIIIIIIII’IIII’IIIl’IIII””’ 
0 I 2 3 4 

Dimensionless Melt Layer Height, H2 

FIG. 4. Prediction of Taylor wavelength during melting of 
horizontal substrate placed beneath a pool of heavier immis- 

cible inviscid liquid. 

the most relevant parameter for determining the effect 
of viscosity of the lower layer. The interacting effects of 
melt viscosity and melt layer thickness on the most 
dangerous wavelength is more clearly demonstrated if, 
for R = 4, the dependence of wavelength or melt layer 
height is compared between liquid viscosity para- 
meters M, = 10 and 100. For melt layer thickness less 
than 1.2, the predicted wavelengths for M, = 10 are 
shorter than for M, 2 100. The reason for this peculiar 
behavior is that as the melt layer becomes thin, the 
viscous drag in the film becomes important. With the 
constraints imposed by surface tension and buoyancy, 
shorter wavelengths offering less viscous drag are 
preferred. 

In Fig. 4, the range of wavelengths [9] observed 
during melting of a slab of olive oil (M2 = 10) placed 
beneath a pool ofwater (M, = liOO), is also plotted. It 
is found that observed wavelengths are about S-1.5% 
longer than predicted. This agreement is indeed good 
noting that the difference is within uncertainty of the 
data. The observed wavelengths would have been 
about 25% shorter, had the melt layer been assumed to 
be infinite. The effect of finite layer is much more 
pronounced if one compares the growth rates given by 
both finite and infinite layer analysis. The growth rate 
as a function of melt layer thickness for olive oil water 
combination is shown in Fig. 5. For a melt layer 
thickness H, = 0.5 (H: = 0.123, the finite layer 
analysis gives dimensionless growth rate of 0.04 
whereas inlinite layer analysis would have predicted it 
to be 0.86. The experimentally observed interface growth 
rate [9] during the period of linear growth compares 
quite favorably with the finite melt layer prediction. 
The analytically predicted growth rate as H, -+ 0 is 
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also fully substantiated by the numerical solutions. 
In situations where the viscosity of the overlying 

liquid pool cannot be neglected, dispersion relation 
equation (35) would be applicable. Figure 6 shows the 
most dangerous wavelength as a function of melt layer 
height when both melt and overlying liquids are 
viscous or when viscosity of either melt or overlying 
liquid pool can be ignored. The calculations are made 
for pool to melt density ratios of 1.1 and 4. In all cases 

the dimensionless wavelength goes to J2/3 as the 
thickness of the melt layer approaches zero. However, 
the limiting behavior of wavelengths depends strongly 
on the relative viscosities and density ratio of the two 
liquids. For melt layer heights less than 2, the viscosity 
of the overlying liquid has little effect on the most 
dangerous wavelength because as the layer becomes 
thin viscous dissipation in the melt layer determines 
tne wavelength. As the melt layer height becomes large, 
viscosities of both liquids affect the most dangerous 
wavelength. In the asymptotic limit, the wavelength for 
an inviscid pool is about 15% shorter than for a pool 
with viscosity parameter M, = 10. It is interesting to 
note that for nearly equal pool to melt densities (e.g. R 
= 1.1) the asymptotic wavelength is the same when 
either one of the two liquids is assumed to be inviscid. 
The effect of increased pool to melt density ratio is to 
diminish the effect of viscosity of either of the two 
liquids on the most dangerous wavelength. 

Condensation or evaporation from the underside of a 
horizontaljat plate or large diameter horizontal tubes 

Heat transfer during condensation on a downward 
facing plate [lo] or the break up of droplets from the 
underside of a bank of tubes in an evaporator [ 1 l] will 
be governed by Taylor instability. The condensate or 
the evaporating liquid is much more viscous than the 
surrounding vapor. The vapor layer is generally very 
deep whereas the liquid film is thin. For tubes with R’ 
> 2, the effect of the radius of curvature of the tube on 
dominant wavelength is expected to be very small [12]. 
Liquid vapor interface on tubes with R’ > 2 can be 
assumed to be plane without any loss of accuracy. 
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FIG. 3. Dependence ofTaylor wave growth rate on melt layer 
height when the overlying liquid is assumed to be immiscible 

and inviscid (M2 = 10, R = 1.1). 

I I , , I 1 I I I 

,,‘J_ - t-t=, I 

1.2 - 

___-_____ 

-=T 
r- 
s 
4 
B 
4 

,” 

3 

5 

0 x 07- 

6 
0 OS- 

t 

p os- 

: 
.% g 04- 

5 OS- 
E 
E 

0.2 - 

Ol- 

0 ’ ’ ’ ’ ’ ’ ’ ’ ’ 

Dimensionless Melt Layer Height, HZ 

FIG. 6. Effect of melt and overlying liquid pool viscosity on 
the most dangerous Taylor wavelength. 

Thus condensation or evaporation is similar to melt- 
ing of immiscible liquids discussed earlier, except now 
the density ratio, R, is much less than unity and 
direction of gravity is reversed. Thus, the dispersion 
relation equation (33) can again be used to determine 
the most dangerous wavelength as a function of liquid 

FIG. 7. Dependence of the most dangerous Taylor wave- 
length on condensate layer height and viscosity. 
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FIG. 8. Photograph of Taylor wave pattern observed during dripping off of silicone oil from a 1.25 cm dia rod 

film thickness for different liquid viscosity parameters, 
M,. The results of these calculations are plotted in Fig. 
7 for R I l/200. The effect of liquid viscosity is to 
increase the wavelength whereas finite melt layer tends 
to shorten the wavelength. The limiting value of the 
wavelength as film layer thickness goes to zero is again 
governed by surface tension and buoyancy. The in- 
teracting effect of buoyancy, surface tension and 
viscosity results in a point of inflection in the curves. 
The liquid layer depth at which this point of inflection 
occurs depends on liquid viscosity as is the depth at 
which the liquid layer acts as infinite. 

A few dripping experiments with highly viscous 
silicone oils were conducted on 1.25 cm (R’ = 3.5) dia 
rod. In the experiments the flow rate of the liquid 
dripping from the rod could be controlled. The details 
of the experiments are given in Appendix B. The 
wavelengths measured at low flow rates* are plotted in 
Fig. 7 while a typical wavepattern observed on the rod 
is shown in Fig. 8. It is noted that the data obtained 
with M, = 1.8 and 0.18 lie within -2% and + 1% of 
the predictions. However, the predictions based on 
infinite liquid layer depth would have been in error by 
about 100% for M, = 1.8 and by 500% for M = 0.18. 
Ironically, the liquid film thickness around the rods in 
both cases is such that predictions based on infinite- 
inviscid layer analysis would have been in error only 
by about lo-20%. In Fig. 7, wavelengths measured by 
Gerstmann and Griffith [lo] during condensation of 
Freon-113 on a downward facing flat plate are also 
plotted. Data compared within about 2% of the 
prediction based on mean depth of the condensate 
film. The predicted wavelength would have been about 
20% longer if the condensate film had been assumed to 
be infinite. 

l At higher flow rates the liquid started to leave the nodes 
of Taylor wave in the form ofjets. To accommodate large flow 
rates, the Taylor wavepatterns were observed to shift to 
critical wavelength which is unaffected by liquid viscosity or 
by finite depth of the liquid layer. 

Melting of a horizontal substrate placed beneath a pool 
of heavier miscible liquid [ 131 

In certain applications, the melt may be miscible in 
the overlying liquid (e.g., MgO floor supporting a pool 
of molten UOr). The melt removal of the lighter liquid 
from the melt layer separating the solid from the 
overlying liquid pool will again be governed by Taylor 
instability. The hydrodynamics of the melt removal 
process will govern the interfacial heat transfer or the 
penetration of the pool into the supporting substrate. 
Several studies [13,14] with simulant fluids have been 
conducted to determine the heat transfer coefficients 
associated with penetration of volumetrically heated 
pools into supporting soluble substrate. The experi- 
ments conducted by Brinsfield [14], with a pool of 
Joule heated salt solution overlying a slab of ice, show 
that water indeed leaves the solid in the form of 
regularly spaced self buoyant jets. The melt layer is 
generally much thinner than the overlying liquid pool 
and the instability of the melt layer can be described by 
case 4 formulated earlier. Figure 9 shows the dimen- 
sionless most dangerous wavelength as a function of 
melt layer height for pool to melt density ratios of 1.1 
and 4 obtained by solving dispersion relation equation 
(40). The calculations are made when kinematic visco- 
sities of both liquids are assumed to be the same or 
when one of the liquids is assumed to be inviscid. It is 
noted that in the absence of interfacial tension, the 
most dangerous wavelength goes to zero with melt 
layer thickness. (The critical wavelength for miscible 
fluids is always zero.) Similar to immiscible liquids, the 
functional dependence of wavelength on melt layer 
height as H, + 0, is governed by both the kinematic 
viscosity conditions and the density ratio of the 
overlying liquid layer and the melt. However, when 
viscosity of the melt is considered, the effect of viscosity 
of the overlying liquid pool on the most dangerous 
wavelength is small. This, as pointed out earlier, is due 
to the fact that viscous drag in the melt controls the 
wavelength as melt layer becomes thin. In the asymp 
totic limit as M, -P CC, the longest wavelengths occur. 
When viscosities of both melt and overlying liquid 
layer are considered the effect of increased pool to melt 
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FIG. 9. Effect of melt layer height on the most dangerous Taylor wavelength when melt and the overlying 
liquid are assumed to be miscible. 

density ratio is again to shorten the asymptotic 
wavelengths. 

It may be pointed out that for water at room 
temperature a 1 mm thick layer would act as infinite 
whereas for a liquid having kinematic viscosity 30 
times greater than water a liquid layer would have to 
be 1 cm thick to act as infinite. In many practical 
appii~tions the kinematic viscosity of the melt would 
be of the same order of magnitude as water and thus a 
very thin melt layer would act as infinite. For such 
cases it would be very useful to know the asymptotic 
value of wavelengths for different melt to pool density 
ratios. Figure 10 shows such a plot. The non- 
dimensionalization of the wavelength and the growth 
rates plotted in Fig. 10 has been modified to include the 

density ratio. This has been done to bound the 
wavelengths as pool to melt density ratio goes to unity. 
However, it has the drawback that for density ratios of 
the order of I, the effect of pool to melt density ratio on 
wavelength is not explicit. It is seen from Fig. 10, that 
as density ratio R -+ 1, the predicted wavelengths are 
the same when either melt or the overlying liquid pool 
is assumed to be inviscid. This is indicative of the fact 
that when pool and melt densities are nearly equal, the 
interfacial disturbances are affected equally by the 
hydrodynamic conditions on either side of the in- 
terface. For large values of R, the viscosity of the melt 
layer does not affect the most dangerous wavelength 
and the corresponding growth rate. Now, as was the 
case for immiscible liquids, the buoyancy and the 

FIG. 

-10 -8 -6 -4 -2 0 2 4 6 IO 

Density Ratio ln(R-I) 

10. Dependence of the most dangerous Taylor wavelength for miscible liquids on melt to Overlying 
liquid density ratio. 
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viscous drag in the pool determine the growth rate and 
wavelength of the disturbance most susceptible to 
growth. 

In Fig. 10, the most dangerous wavelengths ob- 
tained analytically by Plesset and Whipple [6] with 
long and short wave approximations and for very 
small density differences are also ptotted. It is interest- 
ing to note that for density ratios less than 2 [In@ - 1) 
-C 01, their approximate analytical solutions for equal 
pool to melt viscosities are within 15% of the numerical 
solutions and show a correct dependence of wave- 
length on the density ratio. Surprisingly, their analyti- 
cal solutions do even better for large density ratios, 
although the dependence of wavelength on density 
ratio during transition from small to large density ratio 
is not predicted from their analysis. Plesset and 
Whipple also solved numerically the dispersion so- 
lution, similar to equation (35) for density ratios of 
1.00012 and 1.5. Their numerical results agree quite 
well with the present calculations. The spacing ofwater 
jets leaving the surface of the ice slab placed beneath a 
pool of electrolyte (R = 1.6) reported by Brinsfield 
[14] is also plotted in Fig. 10. It is noted that 
Brinsfield’s data compare favorably with the present 
predictions in which kinematic viscosities of both 
liquids are assumed to be the same. 

1. 

2. 

3. 

4. 

5. 

1. 

CONCLUSIONS 

Predictions of the most dangerous Taylor wave- 
length have been made to include the combined 
effect of fluid viscosity, fluid layer height and 
surface tension. It is also shown how the dispersion 
relations for immiscible fluids can be modified to 
treat the miscible fluids, 
In general, the effect offinite vapor layer during film 
boiling and finite liquid layer during condensation 
or melting is to shorten the most dangerous 
wavelength. However, during film boiling very thin 
vapor layers have been found to behave as infinite. 
The effect of melt or condensate viscosity is to 
elongate the most dangerous wavelength, but cer- 
tain combinations of liquid layer viscosity and 
height can yield wavelengths which are shorter 
than predicted from inviscid infinite layer analyses. 
Dripping experiments with silicone oils have been 
conducted to determine the combined effect of 
liquid layer height and viscosity on Taylor wave- 
length observed during condensation or evap- 
oration. The data have been found to compare well 
with the predictions. 
Predicted Taylor wavelengths for miscible liquids 
have been found to compare favorably with limited 
data available from experiments conducted to 
simulate penetration of molten UOz into a layer of 
sacrificial material. 
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APPENDIX A 

TRANSFORMATION OF DISPERSION RELATIONS FOR 
IMMISCIBLE LIQUIDS TO MISCIBLE LIQUIDS 

The dispersion relations developed for immiscible liquids 
can easily be adapted for miscible liquids (no interfacial 
tension) ifmultiplier, s, of K3 in function F is set equal to zero. 
In miscible liquids, the surface tension has no meaning and if 
one defines new variables such that 

R = K.&q- 22 i=lor2 (A-2) 

fi =2 HM?13 (A-3) 

Surface tension simply cancels out as far as ttansformed 
variables are concerned. The transformed variable becomes 

0 = 4yi/gy3 (A-la) 

Is: = ~(v~/g)‘~3 i = 1 or 2 (A-2a) 

A = h(g/$)’ ‘3 (A-3a) 

With these transformations it is seen that surface tension 
also cancels out in the various parameters except R2 and F 
appearing in the dispersion relations [e.g. (27)] such as 

M, vz _=- 
Mz VI 

(A-5) 
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Film 

Worh,ng flu,d 

Test tube (stainless steel1 

FIG. B.l. Schematic diagram of the apparatus used in dripping experiments 

KH, = f?Bj = khj j = 1 and 2. (A-6) 

The terms Qt or F - R* appear in all the elements of a row 
of a determinant representing a particular dispersion relation. 
In terms of the new variables R2 and F are written as 

i=lor2 (A-8) 

F = &$.f?‘3. (A-9) 

Thus Mfi3, could be factored out from all the elements of that 
row without any loss of generality. The new dispersion 
relation in transformed variables will be for miscible liquids. 
(See for example dispersion relation equation 40.) 

APPENDIX B 

DRIPPING EXPERIMENTS 

A few dripping experiments were conducted to determine 
the effect liquid viscosity and liquid layer thickness have on 
the most dangerous wavelength during condensation or 
evaporation. Different grades of silicone oils were used as test 
liquids. A 1.25 cm dia stainless steel tube with a longitudinal 
slot cut at the top was held horizontally. Silicone oil was 

allowed to enter at a controlled rate into the tube at the two 
ends of the tube and to flow out of the tube through the slot. 
Figure B-l shows a schematic diagram of the apparatus. To 
obtain longitudinally uniform flow out of the slot, the width 
of the slot is cut such that pressure drop across the slot is 
much more than pressure drop in the tube itself. The dripping 
rate of the liquid was obtained by collecting the liquid in a pan 
for a certain time and weighing it. Knowing the liquid flow 
rate per unit length of the slot, I, the thickness, 6, of the film 
around the slab was calculated as 

3 l-v 
s(e) = -~ 

[ I 10 
2 pg Sin 0 

(B-1) 

where 0 is measured from the upper stagnation point of the 
tube. From equation (B-l), the film thickness, 6, is predicted 
to become infinitely large all along the tubes as 0 + x. 
However, because of Taylor instability, the liquid film starts 
to break up at regularly spaced nodes. The film thickness in 
between these nodes stays finite. Thus, while plotting the 
wavelength data, the film thickness evaluated as 0 = 57r/6 was 
used. This value of film thickness was also found to compare 
very well with the film thickness observed from the 
photographs. 

INSTABILITE DE TAYLOR DANS L’EBULLITION, 
LA FUSION. LA CONDENSATION OU L’EVAPORATION 

RbumcGOn etudie les effets combines de la tension interfaciale, de la viscosite du liquide et de I’epaisseur de 
la couche liquide sur l’instabilite de Taylor des interfaces plans et horizontaux. L’analyse lineaire tient en 
compte l’application potentielle des resultats aux mecanismes physiques tels que I’ebullition, la fusion de 
substrats horizontaux places contre des bains de liquides miscibles ou non et la condensation ou 
l’evaporation a partir de plaques et de tubes horizontaux. Dans tous les cas, les longueurs d’ondes calculees 
comme les plus dangereuses sont comparies avec les resultats exptrimentaux disponibles et avec les resultats 
analytiques tant que possible. Peu d’experiences ont et6 faites pour Cclaircir l’effet de la viscosite du liquide 

pendant I’igouttage a partir de tubes horizontaux. 

DIE TAYLOR-INSTABILITAT BEIM SIEDEN- SCHMELZEN UND 
KONDENSIEREN ODER VERDAMPFEN 

ZusPmmenfassung-Der kombinierte EinfluR von Obertlachenspannung Viskositat der Fliissigkeit und 
Dicke der Fliissigkeitsschicht auf die Taylor-Instabilitlt an ebenen horizontalen Grenzflachen wurde 
untersucht. Bei der Durchfiihrung der linearen Analyse wurde die miigliche Anwendung der Ergebnisse auf 
physikalische Prozesse stets im Auge behalten: Sieden, Schmelzen von Substrat unter nichtmischbaren und 
mischbaren Fliissigkeiten, Kondensation oder Verdampfung an horizontalen Platten oder Rohren. In allen 
Fallen wurden die berechneten gefahrlichsten Wellenlangen mit den verfiigbaren experimentellen Daten 
und-wo das miiglich war-mit analytischen Grenzwerten verglichen. Einige wenige Versuche wurden 
durchgefiihrt, urn den EinfluB der Viskositat der Fliissigkeit beim Herabtropfen von horizontalen Rohren 

festzustellen. 
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T38JIOPOBCKAR HEYCTOi@MBOCTb IIPM KMl-IEHkIki, WIABJIEHMM, A TAKTE 
KOHAEHCA~RM MJIM kiCl-lAPEHMW 

Amosauun - %kCJICnyeTCR COBMCCTHOC BJIHXHHC IIOBCpXHOCTHOl-0 HSLTIITCHHR, BI13KOCTH H TOJlIUiHbl 

CJIOIl XCKHLZKOCTU Ha TCiiJIOpOBCK)‘lO HCYCTOhiBOCTb IUTOCKHX TOPH30HTaJlbHbIX MCN&WIbIX IIOBCPX- 

HOCki. npOBCjleH JIHHCfiHbIti aHaJIH3 C IlCJlbK) BJaUlCHCHHl BOJMOXCHOCTH WllOJlb30BilHHll pC3j’JIbTaTOB 

LIJIK OIlHCaHHR TaKWX ~HSUWCKHX IlpOUCCCOB, KBK KKllCHHC, WIaBJtCHHC TOPW30HTaJIbHblX IIOAJIOIKCK, 

Hail KOTOPbIMU HaXO~HTC~ 06X.MbI HCCMCUIHBNOLIJHXC~ HJIH CMCUIUBBEOWiXCII XWlKOCTCti, a TaKXe 

KoweHcaUm (wcnapeme) Ha ropsi30HTanbHbIx nnacTmiax mH rpy6ax. Bo Bcex cnyranx, me 3ro 

B03MOXH0, naH0 CpaBHCHETC PaCYCTHMX JHa’iCHHii KPWTHYCCKHX &“HH BOJIH C E,MCloIIJHMHCK 3KC,,‘?pW 

MCHTaJlbHbIMU jlaHHbIM&i H C OrI.XtHU’ICHHbIM YUCnOM HMCIO~HXC,l Z,Ha,,HTW%CKUX ~3j’nbTaTOB. 

BbInOnHCHO HCCKOJlbKO 3KCItCpEiMCHTOB C j”iCTOM BRJKOCTU XCWKOCTH IIpH CTCKaHWW CC C TOPHJOH- 

TaJIbHbIX Tpy6 B Bwe Kanenb. 
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